CS1018 Soft Computing Syllabus


CS1018        SOFT COMPUTING                           3  0  0  100

AIM
To introduce the techniques of soft computing and adaptive neuro-fuzzy inferencing systems which differ from conventional AI and computing in terms of its tolerance to imprecision and uncertainty.

OBJECTIVES
•    To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience
•    To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inferencing systems
•    To provide the mathematical background for carrying out the optimization associated with neural network learning
•    To familiarize with genetic algorithms and other random search procedures useful while seeking global optimum in self-learning situations
•    To introduce case studies utilizing the above and illustrate the
intelligent behavior of programs based on soft computing

UNIT I         FUZZY SET THEORY                                    10
Introduction to Neuro – Fuzzy and Soft Computing – Fuzzy Sets – Basic Definition and Terminology – Set-theoretic Operations – Member Function Formulation and Parameterization – Fuzzy Rules and Fuzzy Reasoning – Extension Principle and Fuzzy Relations – Fuzzy If-Then Rules – Fuzzy Reasoning – Fuzzy Inference Systems – Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models – Input Space Partitioning and Fuzzy Modeling.   
                           
UNIT II     OPTIMIZATION                                              8
Derivative-based Optimization – Descent Methods – The Method of Steepest Descent – Classical Newton’s Method – Step Size Determination – Derivative-free Optimization – Genetic Algorithms – Simulated Annealing – Random Search – Downhill Simplex Search.                           
UNIT III     NEURAL NETWORKS                                    10
Supervised Learning Neural Networks – Perceptrons - Adaline – Backpropagation Mutilayer Perceptrons – Radial Basis Function Networks – Unsupervised Learning Neural Networks – Competitive Learning Networks – Kohonen Self-Organizing Networks – Learning Vector Quantization – Hebbian Learning.                                     
UNIT IV     NEURO FUZZY MODELING                                  9
Adaptive Neuro-Fuzzy Inference Systems – Architecture – Hybrid Learning Algorithm – Learning Methods that Cross-fertilize ANFIS and RBFN – Coactive Neuro Fuzzy Modeling – Framework Neuron Functions for Adaptive Networks – Neuro Fuzzy Spectrum.                           
UNIT V        APPLICATIONS OF COMPUTATIONAL INTELLIGENCE                 8
Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.   

                                    TOTAL : 45
TEXT BOOK
1.    J.S.R.Jang, C.T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft Computing”, PHI, 2004, Pearson Education 2004.

REFERENCES
1.    Timothy J.Ross, “Fuzzy Logic with Engineering Applications”, McGraw-Hill, 1997.
2.    Davis E.Goldberg, “Genetic Algorithms: Search, Optimization and Machine Learning”, Addison Wesley, N.Y., 1989.
3.    S. Rajasekaran and G.A.V.Pai, “Neural Networks, Fuzzy Logic and Genetic Algorithms”, PHI, 2003.
4.    R.Eberhart, P.Simpson and R.Dobbins, “Computational Intelligence - PC Tools”, AP Professional, Boston, 1996.

Previous
Next Post »

Still not found what you are looking for? Try again here.